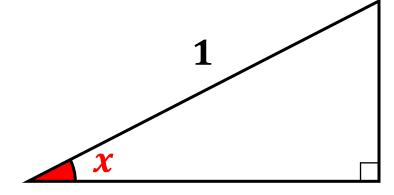
電験どうでしょう管理人 <u>KWG presents</u>

電験オンライン塾

第10回電気数学 三角関数(2)

三角関数

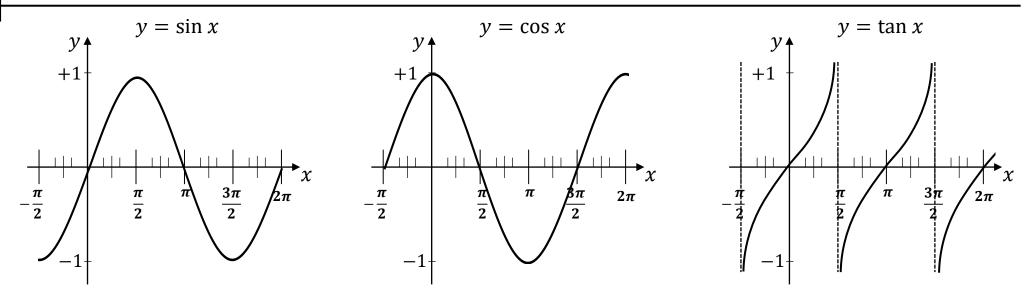


直角三角形のIつの角を変数xで表し、xに対する三角比の値をyとした関数を "三角関数"という

$$y = \sin x$$

$$y = \cos x$$

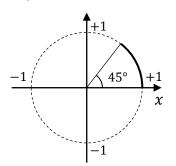
$$y = \tan x$$


 $\sin x$

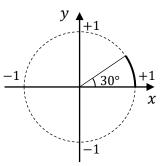
	\cap	C	V
L	O	3	Л

<i>x</i> [rad]	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$y = \sin x$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-rac{1}{\sqrt{2}}$	$-rac{\sqrt{3}}{2}$	-1	$-rac{\sqrt{3}}{2}$	$-rac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0
$y = \cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-rac{1}{\sqrt{2}}$	$-rac{\sqrt{3}}{2}$	-1	$-rac{\sqrt{3}}{2}$	$-rac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0	1/2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$y = \tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-rac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-rac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	0

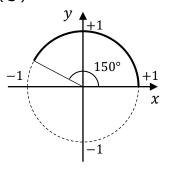
三角関数


<i>x</i> [rad]	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
$y = \sin x$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-rac{1}{\sqrt{2}}$	$-rac{\sqrt{3}}{2}$	-1	$-rac{\sqrt{3}}{2}$	$-rac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0
$y = \cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-rac{1}{\sqrt{2}}$	$-rac{\sqrt{3}}{2}$	-1	$-rac{\sqrt{3}}{2}$	$-rac{1}{\sqrt{2}}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$y = \tan x$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$		$-rac{1}{\sqrt{3}}$	-1	$-\sqrt{3}$	0

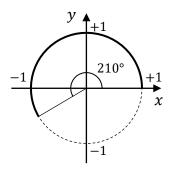
練習問題I


各問に答えよ。各問の円は半径 | の単位円である。

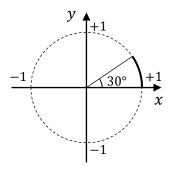
(1)


Ans. $\cos 45^{\circ} =$

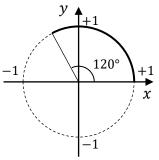
(2)


Ans. $\cos 30^{\circ} =$

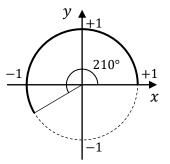
(3)


Ans. $\cos 150^{\circ} =$

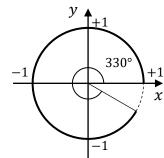
(4)


Ans. $\cos 210^{\circ} =$

(5)


 $\underline{\text{Ans.}}^{\sin 30^{\circ}}$

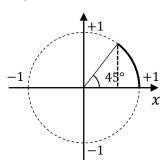
(6)


Ans. $\sin 120^{\circ} =$

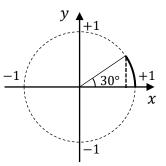
(7)

Ans. $\sin 210^{\circ} =$

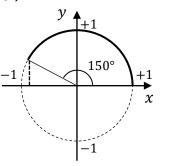
(8)


Ans. $\sin 330^{\circ} =$

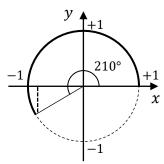
練習問題 | (解答)


各問に答えよ。各問の円は半径 | の単位円である。

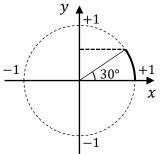
(1)


Ans. $\cos 45^\circ = \frac{1}{\sqrt{2}}$

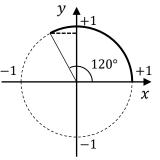
(2)


Ans. $\cos 30^\circ = \frac{\sqrt{3}}{2}$

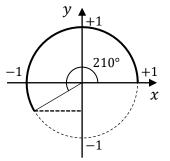
(3)


Ans. $\cos 150^{\circ} = -\frac{\sqrt{3}}{2}$

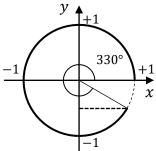
(4)


Ans. $\cos 210^{\circ} = -\frac{\sqrt{3}}{2}$

(5)


Ans. $\sin 30^\circ = \frac{1}{2}$

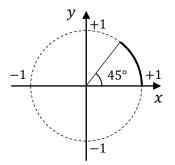
(6)


Ans. $\sin 120^{\circ} = \frac{\sqrt{3}}{2}$

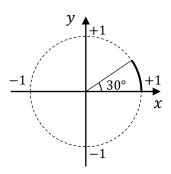
(7)

Ans. $\sin 210^{\circ} = -\frac{1}{2}$

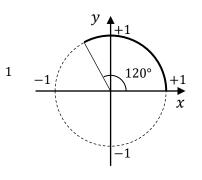
(8)



Ans. $\sin 330^{\circ} = -\frac{1}{2}$


各問に答えよ。各問の円は半径 | の単位円である。

(1)


(2)

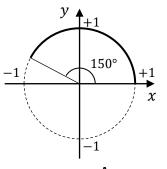
(6)

(3)

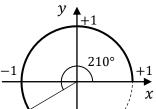
(7)

(4)

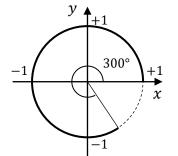
(8)

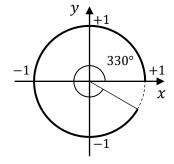

Ans. $tan 45^{\circ} =$

Ans. $\tan 30^{\circ} =$


Ans. $tan 120^{\circ} =$

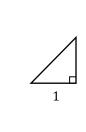
Ans. $tan 135^{\circ} =$


(5)

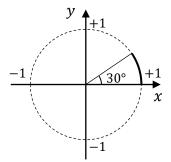

Ans. $tan 150^{\circ} =$

Ans. $\tan 210^{\circ} =$

Ans. $\tan 300^{\circ} =$

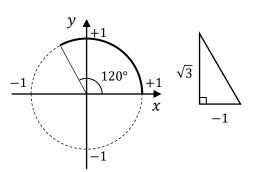

Ans. $\tan 330^{\circ} =$

練習問題2(解答)

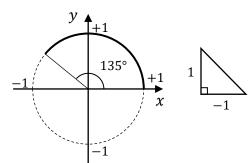


各問に答えよ。各問の円は半径 | の単位円である。

(1)



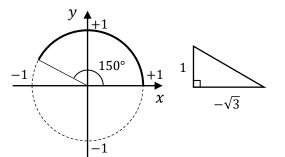
(2)


(3)

(7)

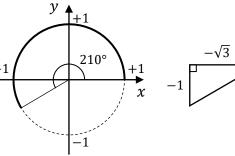
(4)

(8)

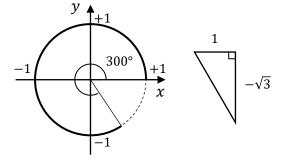

Ans. $tan 45^\circ = 1$

Ans. $\tan 30^\circ = \frac{1}{\sqrt{3}}$

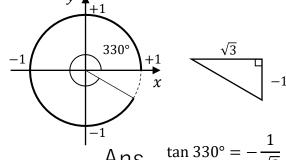
Ans. $\tan 120^\circ = -\sqrt{3}$


Ans. $\tan 135^{\circ} = -1$

(5)

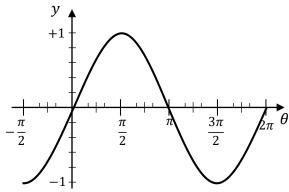


Ans. $\tan 150^\circ = -\frac{1}{\sqrt{3}}$

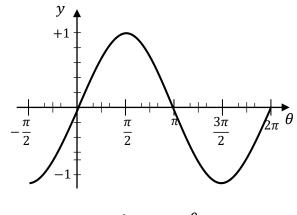

(6)

Ans. $\tan 210^{\circ} = \frac{1}{\sqrt{3}}$

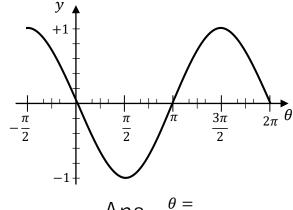
Ans. $\tan 300^\circ = -\sqrt{3}$



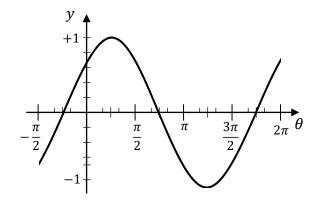
Ans. $\tan 330^{\circ} = -\frac{1}{\sqrt{3}}$


グラフを参照し、各問に答えよ。

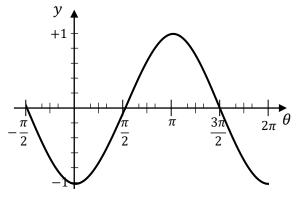
(1) y = 1となる角度[rad]示せ


Ans. $\theta =$

(4) $y = \mathbf{0}$ となる角度[rad]示せ


Ans. $\theta =$

y = 1となる角度[rad]示せ


Ans. $\theta =$

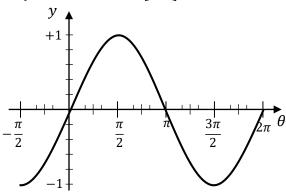
(5) $y = \mathbf{0}$ となる角度[rad]示せ

Ans. $\theta =$

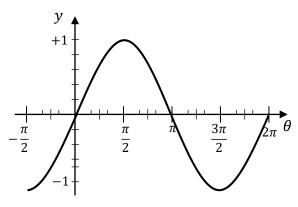
y = 1となる角度[rad]示せ

Ans. $\theta =$

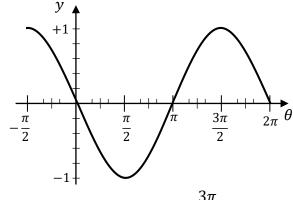
(6) $y = \mathbf{0}$ となる角度[rad]示せ


Ans. $\theta =$

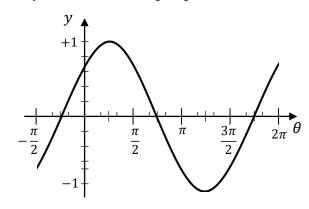
練習問題3(解答)


グラフを参照し、各問に答えよ。

(1) y = 1となる角度[rad]示せ


Ans. $\theta = \frac{\pi}{2}$

(4) $y = \mathbf{0}$ となる角度[rad]示せ

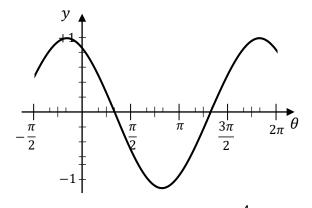

Ans. $\theta = 0, \pi, 2\pi$

y = 1となる角度[rad]示せ

Ans.
$$\theta = \frac{3\pi}{2}$$

(5) $y = \mathbf{0}$ となる角度[rad]示せ

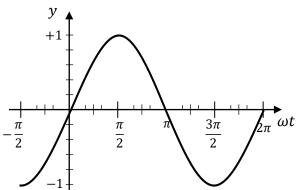
Ans.
$$\theta = -\frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}$$


Copy right © 電験どうでしょう

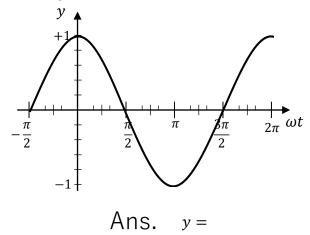
(3) y = 1となる角度[rad]示せ

Ans.
$$\theta = \pi$$

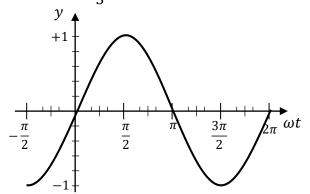
 $y = \mathbf{0}$ となる角度[rad]示せ



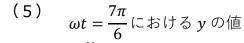
Ans. $\theta = \frac{\pi}{3}, \frac{4\pi}{3}$

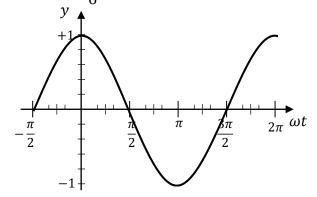

グラフを参照し、各問に答えよ。

(1)
$$\omega t = \frac{\pi}{2}$$
における y の値

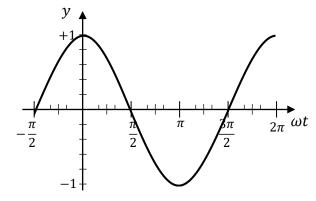


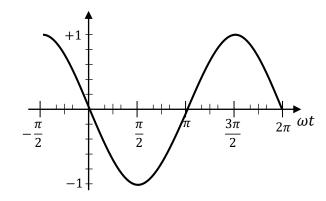
Ans. y =


(4)
$$\omega t = \frac{\pi}{3}$$
における y の値



(2)
$$\omega t = \frac{4\pi}{3}$$
における y の値

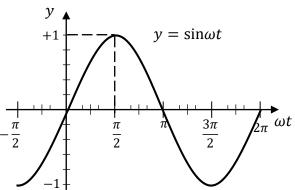

Ans. y =


Ans.
$$y =$$

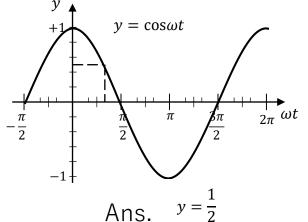
(3)
$$\omega t = \frac{\pi}{6}$$
における y の値

Ans. y =

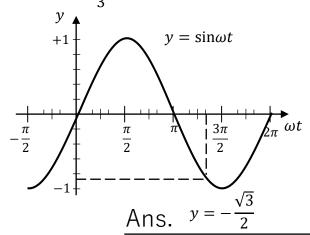
(6)
$$\omega t = \frac{3\pi}{4} における y の値$$


Ans. y =

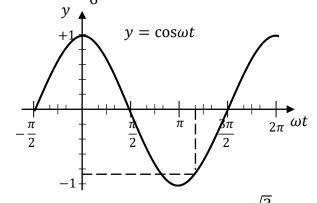
練習問題4(解答)


グラフを参照し、各問に答えよ。

(1)
$$\omega t = \frac{\pi}{2}$$
における y の値

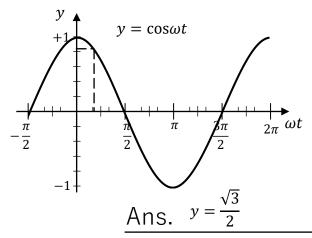

Ans. y = 1

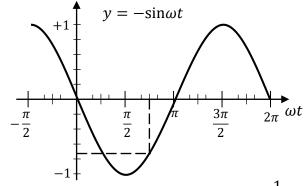
(4)
$$\omega t = \frac{\pi}{3}$$
における y の値



Ans.
$$y = \frac{1}{2}$$

(2)
$$\omega t = \frac{4\pi}{3}$$
における y の値

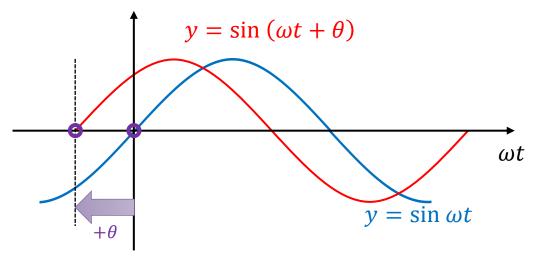

(5)
$$\omega t = \frac{7\pi}{6}$$
における y の値

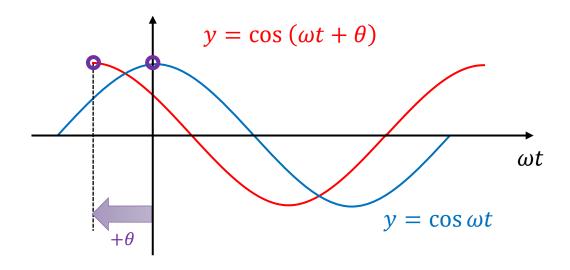

Ans.
$$y = -\frac{\sqrt{3}}{2}$$

Copy right © 電験どうでしょう

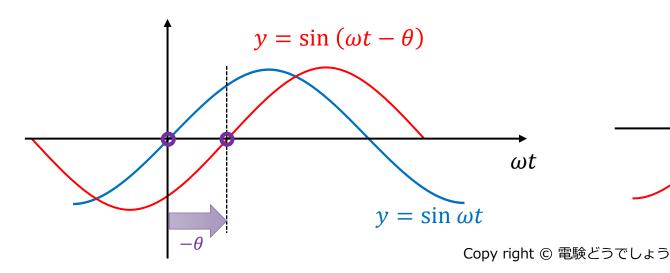
(3)
$$\omega t = \frac{\pi}{6}$$
における y の値

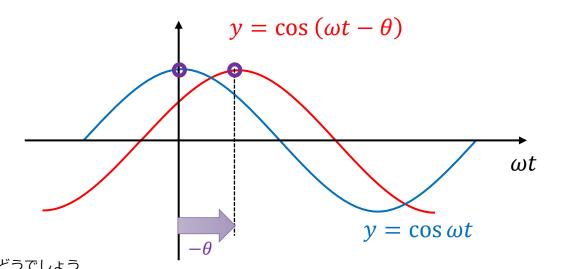
(6)
$$\omega t = \frac{3\pi}{4}$$
における y の値



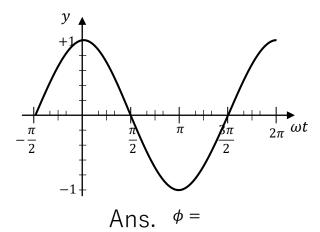

Ans.
$$y = -\frac{1}{\sqrt{2}}$$

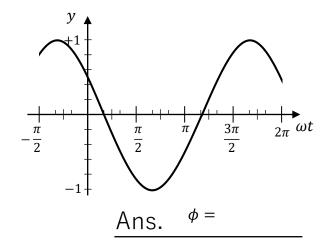
波形と位相差



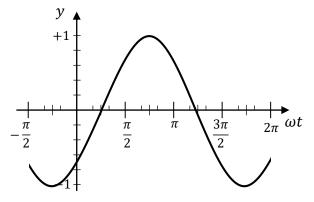

位相差が正だと波形は左にずれる

位相差が負だと波形は右にずれる




各問の位相差 ϕ の値を示せ。ただし、値は弧度法[rad]で表すこととする。

(1)
$$y = \sin(\omega t + \phi)$$

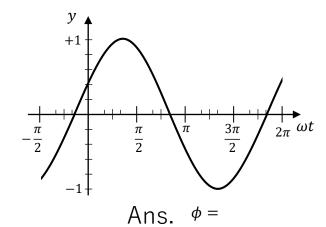


 $y = \cos(\omega t + \phi)$

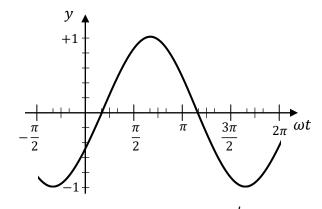
(4)



(2)
$$y = \sin(\omega t + \phi)$$


Ans. $\phi =$

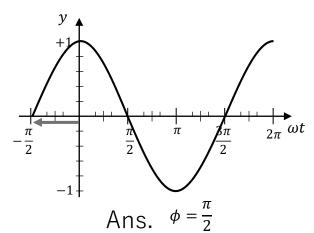
$$(5) y = \cos(\omega t + \phi)$$



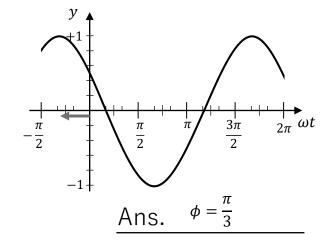
Ans. $\phi =$ Copy right © 電験どうでしょう

$$(3) y = \sin(\omega t + \phi)$$

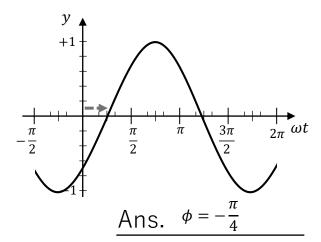
$$(6) y = \cos(\omega t + \phi)$$

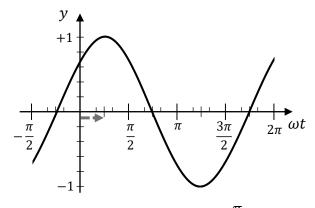

Ans. $\phi =$

練習問題5(解答)

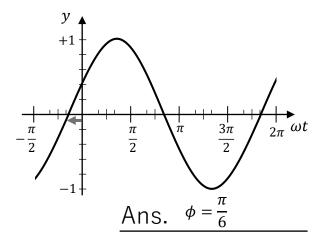


各問の位相差 ϕ の値を示せ。ただし、値は弧度法[rad]で表すこととする。

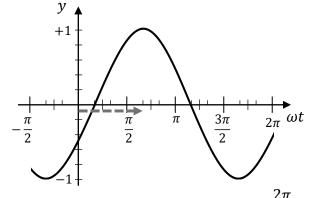

(1)
$$y = \sin(\omega t + \phi)$$


 $(4) y = \cos(\omega t + \phi)$

(2)
$$y = \sin(\omega t + \phi)$$



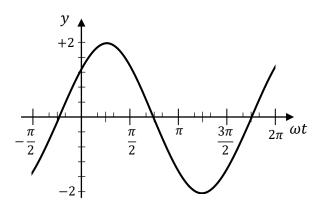
 $(5) y = \cos(\omega t + \phi)$



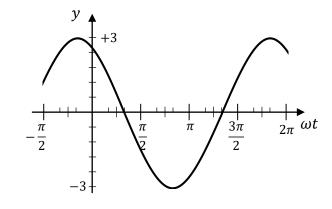
Ans.
$$\phi = -\frac{n}{4}$$
Copy right © 電験どうでしょう

$$(3) y = \sin(\omega t + \phi)$$

$$(6) y = \cos(\omega t + \phi)$$

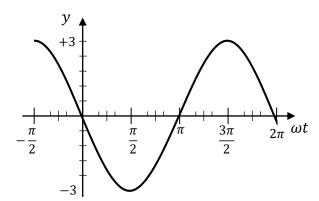


Ans. $\phi = -\frac{2\pi}{3}$

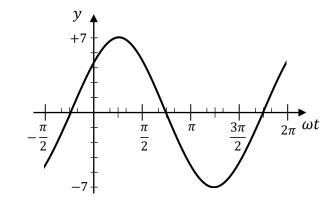

各問の振幅Aと位相差 ϕ の値を示せ。ただし、角度の値は弧度法[rad]で表すこととする。

(1)
$$y = A\sin(\omega t + \phi)$$

Ans. $A = \phi =$



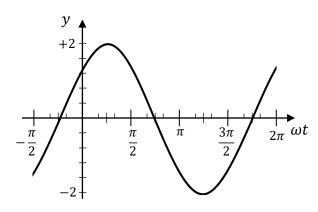
Ans. A =


 $\phi =$

(3)
$$y = A\sin(\omega t + \phi)$$

Ans. $A = \phi =$

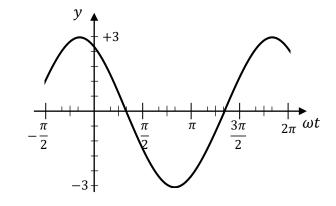
(4)
$$y = A\cos(\omega t + \phi)$$


Ans. $A = \phi =$

練習問題6(解答)

各問の振幅Aと位相差 ϕ の値を示せ。ただし、角度の値は弧度法[rad]で表すこととする。

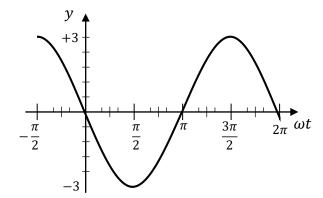
(1)
$$y = A\sin(\omega t + \phi)$$



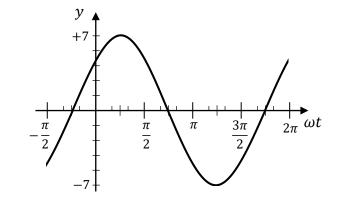
$$y = 2\sin\left(\omega t + \frac{\pi}{4}\right)$$

Ans.
$$A = 2$$
 $\phi = \frac{\pi}{4}$

(2)
$$y = A\cos(\omega t + \phi)$$


(4) $y = A\cos(\omega t + \phi)$

$$y = 3\cos\left(\omega t + \frac{\pi}{6}\right)$$


Ans.
$$A = 3$$
 $\phi = \frac{\pi}{6}$

(3)
$$y = A\sin(\omega t + \phi)$$

$$y = 3\sin(\omega t + \pi)$$

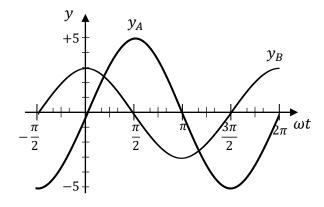
 $\sharp t \in \iota t$,
 $y = 3\sin(\omega t - \pi)$
 $y = -3\sin \omega t$

Ans.
$$A = 3$$
 $\phi = \pi$

$$y = 7\cos\left(\omega t - \frac{\pi}{4}\right)$$

Ans.
$$A = 7$$
 $\phi = -\frac{\pi}{4}$

波形 y_A と y_B の振幅A,Bと位相差 ϕ_A , ϕ_B , $\phi_B - \phi_A$ の値を示せ。 ただし、角度の値は弧度法[rad]で表すこととする。

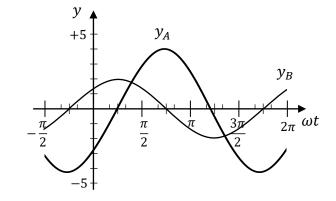

$$(1) y_A = A\sin(\omega t + \phi_A),$$

$$y_B = B\sin(\omega t + \phi_B)$$

$$(1) \quad y_A = A\sin(\omega t + \phi_A), \quad y_B = B\sin(\omega t + \phi_B) \quad (2) \quad y_A = A\sin(\omega t + \phi_A), \quad y_B = B\sin(\omega t + \phi_B)$$

$$y_B = B\sin(\omega t + \phi_B)$$

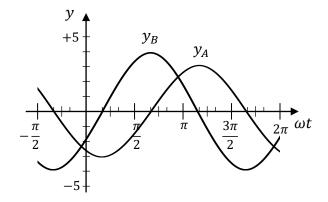
(3)
$$y_A = A\sin(\omega t + \phi_A), \quad y_B = B\sin(\omega t + \phi_B)$$


$$y_B =$$

$$\phi_B - \phi_A =$$

Ans.
$$\phi_A = \phi_B =$$

$$\phi_B - \phi_A =$$


$$y_A =$$

$$y_B =$$

$$\phi_B - \phi_A =$$

$$A = B =$$

Ans.
$$\phi_A = \phi_B = \phi_B - \phi_A =$$

$$y_A =$$

$$y_B =$$

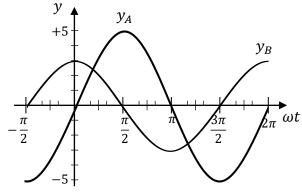
$$\phi_B - \phi_A =$$

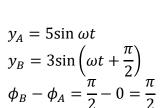
$$A = B =$$

Ans.
$$\phi_A = \phi_B = \phi_B - \phi_A =$$

練習問題7(解答)

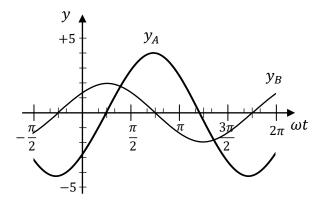
波形 y_A と y_B の振幅A,Bと位相差 $\phi_A,\phi_B,\phi_B-\phi_A$ の値を示せ。 ただし、角度の値は弧度法[rad]で表すこととする。


$$(1) \quad y_A = A\sin(\omega t + \phi_A), \quad y_B = B\sin(\omega t + \phi_B) \quad (2) \quad y_A = A\sin(\omega t + \phi_A), \quad y_B = B\sin(\omega t + \phi_B)$$

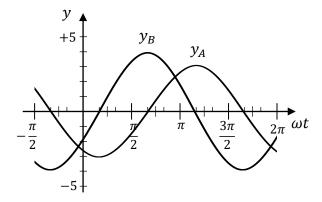

$$y_B = B\sin(\omega t + \phi_B)$$

$$(2) y_A = A\sin(\omega t + \phi_A)$$

$$y_B = B\sin(\omega t + \phi_B)$$


(3)
$$y_A = A\sin(\omega t + \phi_A), \quad y_B = B\sin(\omega t + \phi_B)$$

Ans.
$$\phi_A = 0$$
 $\phi_B = \frac{\pi}{2}$ $\phi_B - \phi_A = \frac{\pi}{2}$


$$y_A = 4\sin\left(\omega t - \frac{\pi}{4}\right)$$

$$y_B = 2\sin\left(\omega t + \frac{\pi}{4}\right)$$

$$\phi_B - \phi_A = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}$$

$$A = 4$$
 $B = 2$

Ans.
$$\phi_A = -\frac{\pi}{4} \phi_B = \frac{\pi}{4}$$
 $\phi_B - \phi_A = \frac{\pi}{2}$

$$y_A = 3\sin\left(\omega t - \frac{2\pi}{3}\right)$$

$$y_B = 4\sin\left(\omega t - \frac{\pi}{6}\right)$$

$$\phi_B - \phi_A = -\frac{\pi}{6} - \left(-\frac{2\pi}{3}\right) = -\frac{\pi}{6} + \frac{4\pi}{6} = \frac{\pi}{2}$$

$$A = 3$$
 $B = 4$

Ans.
$$\phi_A = -\frac{2\pi}{3} \phi_B = -\frac{\pi}{6} \phi_B - \phi_A = \frac{\pi}{2}$$

ご聴講ありがとうございました!!